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Abstract

Solutions of many physical problems have salient local features that are qualitatively known a priori (for example,
singularities at point sources, edge and corners; boundary layers; derivative jumps at material interfaces; strong dipole
field components near polarized spherical particles; cusps of electronic wavefunctions at the nuclei; electrostatic double
layers around colloidal particles, etc.) The known methods capable of providing flexible local approximation of such
features include the generalized finite element – partition of unity method, special variational-difference schemes in bro-
ken Sobolev spaces, and a few other specialized techniques. In the proposed new class of Flexible Local Approximation
MEthods (FLAME), a desirable set of local approximating functions (such as cylindrical or spherical harmonics, plane
waves, harmonic polynomials, etc.) defines a finite difference scheme on a chosen grid stencil. One motivation is to min-
imize the notorious �staircase� effect at curved and slanted interface boundaries. However, the new approach has much
broader applications. As illustrative examples, the paper presents arbitrarily high order 3-point schemes for the 1D
Schrödinger equation and a 1D singular equation, schemes for electrostatic interactions of colloidal particles, electro-
magnetic wave propagation and scattering, plasmon resonances. Moreover, many classical finite difference schemes,
including the Collatz ‘‘Mehrstellen’’ schemes, are direct particular cases of FLAME.
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1. Introduction: computational methods with flexible approximation

In many physical problems some salient features of the solution are qualitatively known a priori. Such
features include singularities at point sources, edge and corners; boundary layers; derivative jumps atmaterial
interfaces; strong dipole field components near polarized spherical particles; cusps of electronicwavefunctions
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at the nuclei; electrostatic double layers around colloidal particles – and countless other examples. Such ‘‘spe-
cial’’ behavior of physical fields is arguably a rule rather than an exception. Clearly, taking this behavior into
account in numerical simulation will tend to produce more accurate and physically meaningful results.

The special features of the field are typically local, and in numerical modeling it is therefore desirable to
employ various local approximations of the field. The focus of this paper is precisely on ‘‘flexible local
approximation’’ and on methods capable of providing it – that is, employing a variety of approximating
functions not at all limited to polynomials. It is from this angle that the existing approaches are reviewed
(Section 2) and new ideas are considered. Section 4 introduces a new class of Flexible Local Approximation
MEthods (FLAME), where the difference scheme is defined by the chosen set of local basis functions and
the grid stencil.

One motivation for developing this class of methods is to minimize the notorious �staircase� effect at
curved and slanted interface boundaries on regular Cartesian grids. In the spirit of ‘‘flexible local approx-
imation’’, the behavior of the solution at the interfaces is represented algebraically, by suitable basis func-
tions on simple grids, rather than geometrically on conforming meshes. More specifically, fields around
spherical particles can be approximated by several spherical harmonics; fields scattered from cylinders –
by Bessel functions, and so on. Such analytical approximations are incorporated directly into the difference
scheme.

This approach can be contrasted with very well known, and very powerful, finite element (FE) method-
ology, where the geometric features of the problem are represented on complex conforming meshes. The
flexibility of approximation in FEM is achieved through adaptive mesh refinement: changing the mesh size
(h-refinement) or the order of approximation (p-refinement). Still, approximation remains piecewise-poly-
nomial; in fact, the polynomial space is an integral part of the standard definition of a finite element [22,17].

FEM is indispensable in many problems where the geometries are complex and material parameters
vary. In addition to mechanical, thermal and electromagnetic modeling of traditional devices and machines,
FEM has recently penetrated new areas of macromolecular simulation. Molecular interface surfaces can be
viewed as intersections of hundreds or thousands of spheres and consequently are geometrically extremely
complex. These interfaces separate the interior of the molecule, that can be approximated by an equivalent
relative dielectric constant on the order of 1–4, from the solvent that in ‘‘implicit’’ models is considered as a
continuum with equivalent dielectric and Debye parameters ([9,46,58,30,41,94,98] and references therein).

However, the computational overhead of mesh generation and matrix assembly in FEM is significant,
and for geometrically simple problems FEM may not be competitive with finite difference (FD) schemes
and other methods operating on simple Cartesian grids. One extreme example of geometric simplicity
comes from molecular dynamics simulations, where charges or dipoles are typically considered in a cubic
box with periodic boundary conditions. The Ewald algorithm (taking advantage of fast Fourier transforms)
is then usually the method of choice.

Problems with multiple moving particles, such as for example in magnetically driven assembly [121,122],
also call for development and application of new techniques. Generation of geometrically conforming FE
meshes is obviously quite complicated or impractical when the particles move and their number is large
(say, on the order of a hundred or more). Parallel adaptive generalized FEM has been developed [47–
49], but the procedure is quite complicated both algorithmically and computationally. Standard FD
schemes would require unreasonably fine meshes to resolve the shapes of all particles. An alternative
approach is to use two types of grid: spherical meshes around the particles and a global Cartesian grid
[44,36]. The electrostatic potential then has to be interpolated back and forth between the grids, which
reduces the numerical accuracy.

The celebrated fast multipole method (FMM) has clear advantages for systems with a large number of
known charges or dipoles in free space (or a homogeneous medium). For inhomogeneous media (e.g. a
dielectric substrate, or finite size particles with dielectric or magnetic parameters different for those of free
space) FMM can still be used as a fast matrix–vector multiplication algorithm imbedded in an iterative
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process for the unknown distribution of volume sources. However, the benefits of FMM in this case are
much less clear. An even stronger case in favor of difference schemes (as compared to FMM) can be made
if the problem is nonlinear (for example, the Poisson–Boltzmann equation). FMM will remain outside the
scope of this paper.

The proposed new FLAME schemes provide a practical alternative that is both uncomplicated and accu-
rate (Section 4). In addition to multiparticle simulations, FLAME techniques can be applied to a variety of
other problems. As a peculiar example, super high-order 3-point schemes are derived for the 1D Schrödinger
equation in Sections 5.7, 5.8 and for a 1D singular equation in Section 5.9.With the 20th-order 3-point scheme
as an illustration, the solution of the harmonic oscillator problem is found almost to machine precision with
10–20 grid nodes. The system matrix remains tridiagonal.

FLAME schemes are conceptually related to many other methods:

1. Generalized FEM by partition of unity [76,6,38,105,7,90,91,10] and ‘‘hp-cloud’’ methods [37].
2. Homogenization schemes based on variational principles [82].
3. Spectral and pseudospectral methods [16,35,86,87] (and references therein).
4. Meshless methods [12,11,29,32,66,70,7,69], and especially the ‘‘Meshless Local Petrov–Galerkin’’ ver-

sion [4,3].
5. Heuristic homogenization schemes, particularly in finite difference time domain methods [34,106,124].
6. Discontinuous Galerkin (DG) methods [2,15,20,25,85].
7. Finite integration techniques (FIT) with extensions and enhancements [24,96].
8. Special FD schemes such as ‘‘exact’’ and ‘‘nonstandard’’ schemes by Mickens and others [78,79]; the

Harari–Turkel [53] and Singer–Turkel schemes [99] for the Helmholtz equation; the Hadley schemes
[50,51] for waveguide analysis; Cole schemes for wave propagation [26,27]; the Lambe–Luczak–Nehr-
bass schemes for the Helmholtz equation [68].

9. Special finite elements, for example elements with holes [101] or inclusions [73].
10. The ‘‘immersed surface’’ methodology [118] that modifies the Taylor expansions to account for deriv-

ative jumps at material boundaries but leads to rather unwieldy expressions.

This selection of related methods is to some extent subjective and definitely not exhaustive. Most methods
and references above are included because they influenced the author�s own research in a significant way;
some references were suggested by the anonymous reviewers of this paper.

The connection of FLAME with methods 1–10, as well as the differences, are first highlighted in Section
2 and then revisited in Section 6. However, at the suggestion of the anonymous reviewer, a few points re-
lated to the nomenclature of the paper ought to be made immediately clear.

Even though the methods listed above (and reviewed in more detail in the following section) share some
level of ‘‘flexible approximation’’ as one of their features, the term ‘‘Flexible Local Approximation MEth-
ods’’ (FLAME) will in this paper refer exclusively to the approach developed in Sections 3 and 4. The new
FLAME schemes are not intended to absorb or supplant any of the methods 1–10. These other methods,
while related to FLAME, are not, generally speaking, its particular cases; nor is FLAME a particular case
of any of these methods.

Consider, for example, a connection between FLAME on the one hand and variational homogenization
(item 2 on the list above) and GFEM (item 1) on the other. The development of FLAME schemes was
motivated to a large extent by the need to reduce the computational and algorithmic complexity of general-
ized FEM and variational homogenization (especially the volume quadratures inherent in these methods).
However, FLAME is emphatically not a version of GFEM or variational homogenization of [82]. Indeed,
GFEM is a Galerkin method in the functional space constructed by partition of unity; the variational
homogenization is, as argued in [110], a Galerkin method in broken Sobolev spaces. In contrast, FLAME
is in most cases a non-Galerkin, purely finite-difference method.



Fig. 1. A schematic ‘‘conformity vs. flexibility’’ view of various numerical methods. One can gain flexibility of approximation by giving
up conformity. This general trend is indicated by the dashed arrow. GFEM outperforms this trend, at a high computational and
algorithmic cost. Classic FD schemes underperform. FLAME schemes fill the existing void.
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The following very schematic chart (Fig. 1) puts various methods into a ‘‘flexibility vs. conformity’’
perspective. As a general trend, flexibility of approximation can be gained by giving up some conformity
of the method. Two methods stand out of that trend: GFEM and classic FD.

GFEM outperforms the trend: it is fully conforming (i.e. operating in a globally defined subspace of the
relevant Sobolev space) and yet allows any desirable approximating functions to be used. However, this
advantage is achieved at a high computational and algorithmic cost. Classic FD schemes underperform
relative to the general trend: they are fully nonconforming and yet make use only of local polynomial
(i.e. Taylor) expansions.

FLAME schemes fill the existing void in the upper-left corner of the chart: they are fully nonconform-
ing1 and admit arbitrary approximations.

Clearly, it would be somewhat simplistic to ask which side of this chart is ‘‘better’’. No one would ques-
tion the tremendous success of conventional FE analysis lying at the �conformal� end. However, the confor-
mity requirements do impose significant limitations in many practical cases. This was understood early on
in the development of FEM – hence the notion of �variational crimes� [103,17], the Crouzeix–Raviart
elements [31], the discontinuous Galerkin methods, variational homogenization [82], etc. The advantages
of the nonconforming end of the spectrum are particularly clear for problems with multiple moving parti-
cles, where finite element mesh generation may be inefficient or impractical.

The FLAME schemes have undergone several stages of development. As mentioned earlier, the general-
ized FEM and variational homogenization served as a starting point for this research. The variational
version of FLAME then followed and was described in [109] in a condensed manner. Section 3.3 of the
present paper incorporates this description to provide the necessary background and to make this paper
self-contained. In particular, the framework of ‘‘multivalued approximation’’ introduced in Section 3.3 will
1 It is argued in Section 3.3 that ‘‘multivalued approximation’’ is the proper framework for treating these methods.
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be needed in subsequent sections. Proofs of consistency and (under the assumption of monotonicity) con-
vergence of variational FLAME are also given.

The crux of this paper, however, is the nonvariational �Trefftz� version of FLAME (Section 4). In this ver-
sion, the basis functions satisfy the underlying differential equation and the variational testing is therefore
redundant. Numerical quadratures – the main bottleneck of generalized FEM, variational homogenization,
meshless and other methods – are completely absent. Despite their relative simplicity, the Trefftz-FLAME
schemes are in many cases more accurate than their variational counterparts.

Section 5 presents a variety of examples for Trefftz-FLAME, including the 1D Schrödinger equation, a
singular 1D equation, 2D and 3D Collatz ‘‘Mehrstellen’’ schemes, and others. The complementary paper
[111] provides a variety of electromagnetic applications of FLAME: electrostatic many-body interactions
with and without solvents; electromagnetic wave propagation in photonic crystals; scattering of electro-
magnetic waves from dielectric particles. For completeness, these applications are briefly reviewed here
in Section 5.10. An interesting new electromagnetic example of Trefftz-FLAME is given in Section 5.11.
It involves plasmon resonances of two coupled cylindrical nanoparticles in close proximity to one another.

The novelty of the present paper is in providing a mathematical description and background for Trefftz-
FLAME difference schemes (including proofs of consistency and convergence) and in extending these new
schemes beyond electromagnetic applications. Methodologically, the main new feature is the systematic use
of local approximation spaces in the FD context. It is hoped that the proposed framework, with its extensive
connections to many existing approaches, will stimulate further development of finite difference and finite
element methods.
2. An overview of existing methods featuring flexible or nonstandard approximation

2.1. Treatment of singularities in standard FEM

The treatment of singularities was historically one of the first cases where special approximating func-
tions were used in the FE context. In their 1973 paper [40], Fix, Gulati and Wakoff considered 2D problems
with singularities rc sinb/, where r, / are the polar coordinates with respect to the singularity point, and b,
c, are known parameters (c < 0). The standard FEM bases were enriched with functions of the form
p(r)rc sinb/, where the piecewise-polynomial cutoff function p(r) is unity within a disk 0 6 r 6 r0, gradually
decays to zero in the ring r0 6 r 6 r1 and is zero outside that ring (r0 and r1 are adjustable parameters). The
cutoff function is needed to maintain the sparsity of the stiffness matrix.

There is clearly a tradeoff between the computational cost and accuracy: if the cutoff radius r1 is too
small, the singular component of the solution is not adequately represented; but if it is too large, the sup-
port of the additional basis function overlaps with a large number of elements and the matrix becomes less
sparse.

The generalized FEM (GFEM) briefly described in the following subsection preserves, at least in prin-
ciple, both accuracy and sparsity. Unfortunately, this major advantage is tainted by additional algorithmic
and computational complexity.

2.2. Generalized FEM by partition of unity

In the generalized FEM [76,6,38,105,7], computational domain X is covered by overlapping subdomains
(�patches�) X(i). Our notational convention is to reserve the superscript for the patch number and to use sub-
scripts for the individual approximating functions within each patch. The solution is approximated locally
over each patch. These individual local approximations are independent from one another and are merged
by partition of unity (PU).
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More precisely, a set of PU functions {u(i)}, 1 6 i 6 npatches is constructed on this system of patches to
satisfy
Fig. 2.
subdo
Xnpatches
i¼1

uðiÞ � 1 in X; suppuðiÞ ¼ XðiÞ. ð1Þ
That is, each function u(i) is associated with the respective patch X(i) and vanishes outside that patch. Then
the global solution u can be decomposed into its �patch components� u(i)
u ¼ u
Xnpatches
i¼1

uðiÞ ¼
Xnpatches
i¼1

uuðiÞ ¼
Xnpatches
i¼1

uðiÞ with uðiÞ � uuðiÞ. ð2Þ
Fig. 2 gives a simple 1D illustration of the PU principle, with just two overlapping patches. A seamless tran-
sition from the solution in the first patch to the solution in the second patch is achieved by multiplying these
individual solutions by the weighting functions u(1) and u(2), respectively. As a reference point moves from
left to right, the weight of the first solution gradually decreases, while simultaneously the weight of the sec-
ond solution increases.

Decomposition (2) is valid for the exact solution but can equally well be used for assembling the global
approximate solution from the local ones. Suppose that locally, within each patch X(i), the exact solution u

can be approximated by a linear combination uðiÞh of some approximating functions gðiÞa :
uðiÞh ¼
X
a

cðiÞa gðiÞa . ð3Þ
The final system of approximating functions wðiÞ
a is built with u(i) as weight functions:
wðiÞ
a ¼ gðiÞa uðiÞ. ð4Þ
The global approximation error is guaranteed to be bounded by the local (patch-wise) errors [6,105,7], with
rigorously provable estimates of the global error in terms of local errors and the norms of the PU functions
/. A detailed explanation and analysis of this method proposed originally by Babuška and Melenk is widely
available. For example, Strouboulis et al. [105] present an extensive set of application examples with special
functions for material inclusions in stress analysis. Babuška et al. [5] apply GFEM (still at the early stages
of development in 1994) to problems with material interfaces. Plaks et al. [90] implemented GFEM for
problems with magnetized particles.

The main advantage of GFEM is that the approximating functions can in principle be arbitrary and are
certainly not limited to polynomials. Thus GFEM definitely qualifies as a method with the kind of flexible
local approximation we seek.
The idea of partition of unity illustrated in 1D: weighting functions u(1) and u(2) used to merge two solutions in the overlapping
mains. The sum of the weighting functions is unity everywhere.
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On the negative side, however, multiplication by the partition of unity functions makes the system of
approximating functions more complicated, and possibly ill-conditioned or even linearly dependent [6].
The computation of gradients and implementation of the Dirichlet conditions also get more complicated.
In addition, GFEM-PU may lead to a combinatorial increase in the number of degrees of freedom [90,110].
An even greater difficulty in GFEM-PU is the high cost of the Galerkin quadratures that need to be com-
puted numerically in geometrically complex 3D regions (intersections of overlapping patches).

In summary, there is a high algorithmic and computational price to be paid for all the flexibility that
GFEM provides.

2.3. Homogenization schemes based on variational principles

Moskow et al. [82] improve the approximation of the electrostatic potential near slanted boundaries and
narrow sheets on regularCartesian grids by employing special approximating functions constructed by a coor-
dinate mapping [5]. Within each grid cell, the authors seek a tensor representation of the material parameter
such that the discrete and continuous energy inner products are the same over the chosen discrete space. The
overall construction in [82] relies on a special partitioning of the grid (‘‘red–black’’ numbering, or the ‘‘Lebe-
dev grid’’) and on a specific, central difference, representation of the gradient. As shown in [110], this varia-
tional homogenization can be interpreted as a Galerkin method in a broken Sobolev space.

The variational method described in Section 3 can be viewed as an extension of the variational-difference
approach of [82] – the special �Lebedev� grids and the specific approximation of gradients by central differ-
ences adopted in [82] turn out not to be really essential for the algorithm.

2.4. Discontinuous Galerkin methods

The idea to relax the interelement continuity requirements of the standard FEM and to use nonconform-
ing elements was put forward at the early stages of FE research. For example, in the Crouzeix–Raviart ele-
ments [31] the continuity of piecewise-linear functions is imposed only at midpoints of the edges.

Over recent years, a substantial amount of work has been devoted to discontinuous Galerkin methods
(DGM) [15,20,25,85]; a consolidated view with extensive bibliography is presented in [2]. Many of the ap-
proaches start with the ‘‘mixed’’ formulation that includes additional unknown functions for the fluxes on
element edges (2D) or faces (3D). However, these additional unknowns can be replaced with their numer-
ical approximations, thereby producing a ‘‘primal’’ variational formulation in terms of the scalar potential
alone. In DGM, the interelement continuity is ensured, at least in the weak sense, by retaining the surface
integrals of the jumps, generally leading to saddle-point problems even if the original equation is elliptic.

2.5. Homogenization schemes in FDTD

Finite difference time domain (FDTD)methods of applied electromagnetics require very extensive compu-
tationalwork due to a large number of time steps for numerical wave propagation and largemeshes. Therefore
simple Cartesian grids are strongly preferred and the need to avoid �staircase� approximations of curved or
slanted boundaries is quite acute. Due to the wave nature of the problem, any local numerical error, including
the errors due to the staircase effect, tend to propagate in space and time and pollute the solution overall.

A great variety of approaches to reduce or eliminate the staircase effect in FDTD have been proposed
[34,106,124,125]. Each case is a trade-off between the simplicity of the original Yee scheme on staggered
grids [119] and the ability to represent the interface boundary conditions accurately. On one side of this
spectrum lie various adjustments to the Yee scheme: changes in the time-stepping formulas for the magnetic
field or heuristic homogenization of material parameters based on volume or edge length ratios
[34,106,124]. In some cases, the second order of the FDTD scheme is maintained by including additional
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geometric parameters or by using partially filled cells, as done by Zagorodnov et al. [125] in the framework
of ‘‘finite integration techniques’’.

On the other side of the spectrum are finite volume – time domain methods (FVTD) [89,106,120] with
their historic origin in computational fluid mechanics, and the finite element method (FEM). Tetrahedral
meshes are typically used, and material interfaces are represented much more accurately than on Cartesian
grids. (However, adaptive Cartesian grids have also been advocated, with cell refinement at the boundaries
[115].) The greater geometric flexibility of these methods is achieved at the expense of simplicity of the algo-
rithm. FEM has an additional disadvantage for time-domain problems: the ‘‘mass’’ matrix (containing the
inner products of the basis functions) appears in the time derivative term and makes the time-stepping pro-
cedure implicit, unless ‘‘mass-lumping’’ techniques are used.

2.6. Meshless methods

The abundance of meshless methods, as well as many variations in the terminology adopted in the lit-
erature, make a thorough review unfeasible here – see [12,11,29,32,66,70,7] instead. We only highlight the
main ideas and features.

The prevailing technique is the moving least squares (MLS) approximation. Consider a �meshless� set of
nodes (that is, nodes selected at arbitrary positions ri, i = 1,2, . . .,n) in the computational domain. For each
node i, a smooth weighting function Wi(r) with a compact support is introduced; this function would typ-
ically be normalized to one at node i (i.e. at r = ri) and decay to zero away from that node. Intuitively, the
support of the weighting function defines the ‘‘zone of influence’’ for each node.

Let u be a smooth function that we wish to approximate by MLS. For any given point r0, one considers a
linear combination of a given set of m basis functions wa(r) (almost always polynomials in the MLS frame-
work): uðiÞh ¼

Pm
a¼1caðr0ÞwaðrÞ. Note that the coefficients c depend on r0. They are chosen to approximate the

nodal values of u, i.e. the Euclidean vector {u(ri)}, in the least-squares sense with respect to the weighted
norm with the weights Wi(r0). This least-squares problem can be solved in a standard fashion; note that
it involves only nodes containing r0 within their respective ‘‘zones of influence’’ – in other words, only nodes
i for which Wi(r0) 6¼ 0.

Duarte and Oden [37] showed that this procedure can be recast as a partition of unity method, where the
PU functions are defined by the weighting functions W as well as the (polynomial) basis set {w}. This leads
to more general adaptive ‘‘hp-cloud’’ methods.

One version of meshless methods – ‘‘meshless local Petrov–Galerkin’’ (MLPG) method developed by
Atluri et al. [4,3,69] – is particularly close to the variational version of FLAME described in [109] and
in Section 3 below. Our emphasis, however, is not on the �meshless� setup (even though it is conceivable
for FLAME) but on the framework of multivalued approximation (that is not explicitly introduced in
MLPG) and on the new nonvariational version of FLAME (Section 4).

The trade-off for avoiding complex mesh generation in mesh-free methods is the increased computa-
tional and algorithmic complexity. The expressions for the approximating functions obtained by least
squares are rather complicated [11,32,66,70,7]. The derivatives of these functions are even more involved.
These derivatives are part of the integrand in the Galerkin inner product, and the computation of numerical
quadratures is a bottleneck in meshless methods. Other difficulties include the treatment of Dirichlet con-
ditions and interface conditions across material boundaries [29,32,66,70].

2.7. Pseudospectral methods

In pseudospectral methods (PSM) [16], numerical solution is sought as a series expansion in terms of
Fourier harmonics, Chebyshev polynomials, etc. The expansion coefficients are found by collocating the
differential equation on a chosen set of grid nodes.
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Typically the series is treated as global – over the whole domain or large subdomains. There are, how-
ever, many versions of pseudospectral methods, some of which (‘‘spectral elements’’) deal with more local-
ized approximations and in fact overlap with the hp-version of FEM [77].

The key advantage of PSM is their exponential convergence, provided that the solution is quite smooth
over the whole domain.

One major difficulty is the treatment of complex geometries. In relatively simple cases this can be accom-
plished by a global mapping to a reference shape (square in 2D or cube in 3D) but in general may not be
possible. Another alternative is to subdivide the domain and use spectral elements (with �spectral� approx-
imation within the elements but lower order smoothness across their boundaries); however, convergence is
then algebraic, not exponential, with respect to the parameter of that subdivision.

The presence of material interfaces is an even more serious problem, as the solution then is no longer
smooth enough to yield the exponential convergence of the global series expansion.

An additional disadvantage of PSM is that the resultant systems of equations tend to have much higher
condition numbers than the respective FD or FE systems [83]. This is due to the very uneven spacing of the
Chebyshev or Legendre collocation nodes typically used in PSM. Ill-conditioning may lead to accuracy loss
in general and to stability problems in time-stepping procedures.

PSM have been very extensively studied over the last 30 years, and quite a number of approaches alle-
viating the above disadvantages have been proposed [35,77,83,86]. Nevertheless it would be fair to say that
these disadvantages are inherent in the method and impede its application to problems with complex geom-
etries and material interfaces.

Pseudospectral methods could technically be considered as a particular case of the variational version of
FLAME schemes in Section 3, if the basis set is chosen as Fourier harmonics or Chebyshev polynomials,
etc., and the test functionals are the Dirac deltas. However, the emphasis in FLAME is on local approxi-
mation, precisely to capture behavior of the solution that cannot be easily treated by global spectral expan-
sions (e.g. discontinuities at material interfaces).

2.8. Special difference schemes

Many difference schemes rely on special approximation techniques to improve the numerical accuracy.
These special techniques are too numerous to list, and only the ones that are more closely related to the
ideas of this paper are briefly reviewed below.2

For 1D equations with constant coefficients, ‘‘exact’’ FD schemes – that is, schemes with zero consis-
tency error – are fairly well known (see e.g. [88,78]). These ‘‘exact’’ schemes happen to be a direct particular
case of the Trefftz-FLAMEmethods introduced in Section 4. Mickens also developed a wider class of ‘‘non-
standard’’ schemes by modifying finite difference approximations of derivatives. These modified approxi-
mations are asymptotically (as the mesh size tends to zero) equivalent to the standard ones but for finite
mesh sizes may yield higher accuracy. Similar ideas were used by Harari and Turkel [53] and Singer and
Turkel [99] to construct exact and high-order schemes for the Helmholtz equation in 1D, 2D and 3D. Cole
[26,27] has applied nonstandard methods to electromagnetic wave propagation problems (high-order
schemes) in 2D and 3D.

Nehrbass [84] and Lambe et al. [68] modified the central coefficient of the standard FD scheme for the
Helmholtz equation to minimize, in some sense, the average consistency error over plane waves propagat-
ing in all possible directions. Some similarity between the Nehrbass schemes and FLAME will become
obvious in Section 4. However, the derivation of the Nehrbass schemes requires very elaborate symbolic
2 I would like to thank the anonymous reviewers of this paper for pointing out additional methods and references.
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algebra coding, as the averaging over all directions of propagation leads to integrals that are quite involved.
In contrast, FLAME schemes are very inexpensive and easy to construct.

Very closely related to the material of the present paper are the special difference schemes developed by
Hadley [50,51] for electromagnetic wave propagation. In fact, these schemes are direct particular cases of
FLAME, with Bessel functions forming a Trefftz-FLAME basis (although Hadley derives them from dif-
ferent considerations).

For unbounded domains, an artificial truncating boundary has to be introduced in FD and FE methods.
The exact conditions at this boundary are nonlocal; however, local approximations are desirable to main-
tain the sparsity of the system matrix. One such approximation that has gained some popularity is the so-
called ‘‘measured equation of invariance’’ (MEI) by Mei et al. [74,45,55]. As it happens, MEI can be viewed
as a particular case of Trefftz-FLAME, with the basis functions taken as potentials due to some test dis-
tributions of sources (called �metrons� in MEI).
2.9. Special finite element methods

There is also quite a number of special finite elements, and related methods, that incorporate specific
features of the solution. In problems of solid mechanics, Jirousek in the 1970s [62,61] proposed �Trefftz� ele-
ments, with basis functions satisfying the underlying differential equation exactly. This not only improves
the numerical accuracy substantially, but also reduces the Galerkin volume integrals in the computation of
stiffness matrices to surface integrals (via integration by parts). Since then, Trefftz elements have been devel-
oped quite extensively; see a detailed study by Herrera [56] and a review paper by Jirousek and Zielinski
[63].

Also in solid mechanics, Soh and Long [101] proposed two 2D elements with circular holes, while Me-
guid and Zhu [73] developed special elements for the treatment of inclusions.

Enrichment of FE bases with special functions is well established in computational mechanics. The var-
iational multiscale method by Hughes [59] provides a general framework for adding fine-scale functions in-
side the elements to the usual coarse-scale FE basis. The additional amount of computational work is small
if the fine scale bases are local, i.e. confined to the support of a single element. However, in this case the
global effects of the fine scale are lost.

In the method of residual-free bubbles by Brezzi et al. [18], the standard element space is enriched with
functions satisfying the underlying differential equation exactly. There is a similarity with the Trefftz schemes
described in Section 4. However, the methods considered in the present paper are difference schemes rather
than Galerkin finite element methods. The conformity of the method is maintained by having the �bubbles�
vanish at the interelement boundaries. Similar �bubbles� are common in hierarchical finite element algo-
rithms (see e.g. [123]); still, traditional FE methods – hierarchical or not – are built exclusively on piece-
wise-polynomial bases.

Farhat et al. [39] relax the conformity conditions and get higher flexibility of approximation in return.
As in the case of residual-free bubbles, functions satisfying the differential equation are added to the FE
basis. However, the continuity at interelement boundaries is only weakly enforced via Lagrange
multipliers.

The following observation by Melenk [75] in reference to special finite elements is highly relevant to our
discussion:

‘‘The theory of homogenization for problems with (periodic) microstructure, asymptotic expansions for
boundary layers, and Kondrat�ev�s corner expansions are a few examples of mathematical techniques
yielding knowledge about the local properties of the solution. This knowledge may be used to construct
local approximation spaces which can capture the behavior of the solution much more accurately than
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the standard polynomials for a given number of degrees of freedom. Exploiting such information may
therefore be much more efficient than the standard methods . . .’’
2.10. Domain decomposition

This section (added at the suggestion of the anonymous reviewer), unlike the previous ones, is intended
to highlight the differences rather than the similarities between the methods of this paper and the existing
techniques. The setup of FLAME (see the following section) may suggest its interpretation as a domain
decomposition method. While this may be technically correct, there is a substantial conceptual and prac-
tical difference between the two classes of methods. In FLAME, the domain cover consists of �micro� (sten-
cil-size) subdomains. In contrast, domain decomposition methods usually operate with �macro� subdomains
that are relatively large compared to the mesh size. Consequently, the notions and ideas of domain decom-
position (e.g. Schwartz methods, mortar methods, Chimera grids, and so on) will not be directly used in our
development.
3. Variational-difference schemes with flexible local approximation

3.1. The model problem

The variational version of FLAME was described in [109,110]. This section follows [109] very closely;
however, Section 3.2 is new. A new nonvariational version of FLAME is introduced in Section 4.

It was very recently brought to the author�s attention [117] that the variational version of FLAME is
very close to the ‘‘meshless local Petrov–Galerkin’’ (MLPG) method developed by Atluri and collaborators
[4,3] (see also [69]). For the sake of completeness, this section briefly reviews the general setup of the method
– in particular, the concept of multivalued approximation (that is not explicitly introduced in the literature
on MLPG). This setup will be equally important for the nonvariational �Trefftz� version of FLAME con-
sidered in Section 4.

Although the potential application areas of FLAME are broad, for illustrative purposes in this section
we shall have in mind the model static Dirichlet problem
Lu � �r � rru ¼ f in X � Rn ðn ¼ 2; 3Þ; ujoX ¼ 0. ð5Þ
Here r is a material parameter (conductivity, permittivity, permeability, etc.) that can be discontinuous
across material boundaries and can depend on coordinates but not, in the linear case under consideration,
on the potential u. The computational domain X is either two- or three-dimensional, with the usual math-
ematical assumption of a Lipschitz-continuous boundary. To simplify the exposition, precise mathematical
definitions of the relevant functional spaces will not be given, and instead we shall assume that the solution
has the degree of smoothness necessary to justify the analysis.

At any material interface boundary C, the usual conditions hold:
u1 ¼ u2 on C; ð6Þ

r1

ou1
on

¼ r2

ou2
on

on C; ð7Þ
where the subscripts refer to the two subdomains X1 and X2 sharing the material boundary C, and n is the
normal direction to C.
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3.2. Motivating ideas

Intuitive ideas motivating the development of FLAME can be summarized as follows:

1. Flexible approximation vs. Taylor expansion.
2. Conformity of the method vs. flexibility of approximation.
3. Stencil as a ‘‘black box’’.

The first two items have already been discussed. The third one implies the treatment of the nodal values
as combined inputs/outputs of a ‘‘black box’’. The relationship between these nodal values depends on the
�content� of the black box, i.e. on the distribution of material parameters near the stencil.

For example, if the standard 5-point stencil in 2D is located in a homogeneous region (i.e. r = const.)
with no sources (f = 0 in the vicinity of the stencil), the ‘‘black box’’ is approximately described by the dis-
crete Laplace operator
3 On
is not
neighb
unx�1;ny � 2unx ;ny þ unxþ1;ny

h2x
þ
unx ;ny�1 � 2unx;ny þ unx ;nyþ1

h2y
¼ 0; ð8Þ
where the notation for the nodal values of the solution is self-explanatory. Now suppose that the stencil is
located near a material boundary (so that different nodes of the stencil may even lie in regions with different
material characteristics). It is then intuitively clear that there ‘‘must be’’ a relationship similar to (8) between
the nodal values – just with a different set of coefficients of the scheme. The only question is how to find this
relationship. The answers given in this section and in [82] rely on variational principles. An alternative an-
swer in the following section is based on �Trefftz� approximations.
3.3. Construction of variational FLAME schemes

The first ingredient of the proposed setup is the same as in GFEM: a set of overlapping patches X(i) cov-
ering the computational domain X = [X(i), i = 1,2, . . .,n. Within each patch, there is a local approximation
space
WðiÞ ¼ spanfwðiÞ
a ; a ¼ 1; 2; . . . ;mðiÞg. ð9Þ
Note that no global approximation space will be considered. Rather, the following notion is introduced:
For a given domain cover {[X(i)} with corresponding local spaces W(i), a multivalued approximation

uh{[X(i)} of a given potential u is just a collection of patch-wise approximations:
uhf
[

XðiÞg � fuðiÞh 2 WðiÞg. ð10Þ
In regions where two or more patches overlap (Fig. 3), several local approximations coexist and do not
have to be the same. This situation in fact is inherent in the FD methodology but is almost never stated
explicitly.3

The second ingredient is a set of n nodes (the number of nodes is equal to the number of patches).
Although a meshless setup is possible, we shall for maximum simplicity assume a regular grid with a
mesh size h. The ith stencil is defined as a set of m(i) nodes within X(i): Stencil(i) ” {nodes 2 X(i)}. For
e might argue that in FD methods approximation between the nodes is not multivalued but simply undefined. This point of view
incorrect but ignores the fact that the very derivation of FD schemes typically relies upon disparate Taylor expansions in the
orhoods of each grid point.



Fig. 3. Overlapping patches with 5-point stencils. (Reprinted by permission from [109] �2004 IEEE.)
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any continuous potential u, Nu will denote the set of its values at all grid nodes (viewed as a Euclidean
vector in Rn), and NðiÞu – the set of nodal values on Stencil(i). Convergence in this framework (for
h ! 0) is understood either in the nodal norm as kuh �NukEn ! 0 or, alternatively, in the Sobolev
norm as ð

P
iku

ðiÞ
h � uk2H1ðXðiÞÞÞ

1=2 ! 0. The underscore signs throughout the paper denote column
vectors.

The next ingredient in the variational formulation is a set of linear test functionals that will be denoted
with primes:
fðwðiÞÞ0g; xðiÞ � suppðwðiÞ0 Þ �� XðiÞ; i ¼ 1; 2; . . . n. ð11Þ
Since wðiÞ0 vanishes outside X(i), possible discontinuity of the local approximation uðiÞh at the patch boundary
is unimportant. The local solution within the ith patch is a linear combination of the chosen basis functions:
uðiÞh ¼
XmðiÞ

a¼1

cðiÞa wðiÞ
a ¼ cðiÞTwðiÞ 2 WðiÞ; ð12Þ
where c(i), w(i) are viewed as column vectors, with their individual entries marked with subscript a. In the
variational formulation, the discrete system of equations is obtained by applying the chosen linear test func-
tionals to the differential equation:
½uðiÞh ; ðwðiÞÞ0� ¼ hf ; ðwðiÞÞ0i ð13Þ
or equivalently
½cðiÞTwðiÞ; ðwðiÞÞ0� ¼ hf ; ðwðiÞÞ0i; ð14Þ
where [u,w] ” (Lu,w) and Æf, (w(i)) 0æ is an alternative notation for (w(i)) 0(f).

This equation is in terms of the expansion coefficients c of (12). To obtain the actual difference scheme in
terms of the nodal values, one needs to relate the coefficient vector cðiÞ � fcðiÞa g 2 Rm of expansion (12) to the
vector u(i) 2 rM of the nodal values of uðiÞh on Stencil(i). (The superscript (i) for M and m has been dropped
for simplicity of notation.) The relevant transformation matrix
uðiÞ ¼ N ðiÞcðiÞ ð15Þ

contains the nodal values of the basis functions on the stencil; if rk is the position vector of node k, then
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N ðiÞ ¼

wðiÞ
1 ðr1Þ wðiÞ

2 ðr1Þ . . . wðiÞ
m ðr1Þ

wðiÞ
1 ðr2Þ wðiÞ

2 ðr2Þ . . . wðiÞ
m ðr2Þ

. . . . . . . . . . . .

wðiÞ
1 ðrMÞ wðiÞ

2 ðrMÞ . . . wðiÞ
m ðrMÞ

0
BBBB@

1
CCCCA. ð16Þ
If M = m and N(i) is nonsingular,
cðiÞ ¼ ðN ðiÞÞ�1uðiÞ ð17Þ

and (14) becomes
½uðiÞTðN ðiÞÞ�TwðiÞ; ðwðiÞÞ0� ¼ hf ; ðwðiÞÞ0i. ð18Þ

(It is implied that the functional [,] in the left-hand side is applied to the column vector {w(i)} entry-wise).
Then (14) or (18) can equally well be written as
uðiÞTðN ðiÞÞ�T½wðiÞ; ðwðiÞÞ0� ¼ hf ; ðwðiÞÞ0i. ð19Þ

Equivalently, one may note that matrix N governs the transformation from the original basis fwðiÞ

a g in W(i)

to the nodal basis fwðiÞ
nodal

g such that wðiÞ
ab;nodalðrbÞ ¼ dab. Indeed, two equivalent representations of uðiÞh in the

original and nodal bases
uðiÞh ¼ uðiÞTwðiÞ
nodal

¼ cðiÞTwðiÞ ð20Þ
yield, together with (17),
wðiÞ
nodal

¼ ðN ðiÞÞ�TwðiÞ ð21Þ
which reveals that (14) is in fact
uðiÞT½wðiÞ
nodal

; ðwðiÞÞ0� ¼ hf ; ðwðiÞÞ0i. ð22Þ
Expressions (18) and (22) are equivalent but suggest two different algorithmic implementations of the
difference scheme. According to (18), one can first compute the Euclidean vector of inner products
f(i) = [w(i), (w(i)) 0] and the difference scheme then is (N(i))�Tf(i). Alternatively, according to (22), one first
computes the nodal basis (21) and then the products ½wðiÞ

nodal
; ðwðiÞÞ0�.

The algorithm for generating variational-difference schemes for an equation Lu = f can be summarized
as follows (for M = m and nonsingular N(i)):

1. For a given node, choose a stencil, a set of local approximating functions {w}, and a test functional w 0.
2. Calculate the values of the w�s at the nodes and combine these values into the N matrix (16).
3. Solve the system with matrix NT and the r.h.s. w to get the nodal basis.
4. Compute the coefficients of the difference scheme as [wnodal,w 0] ” (Lwnodal,w 0).

Alternatively, stages 3 and 4 can be switched:

3 0. Compute the values [w,w 0] ” (Lw,w 0).
4 0. Solve the system with matrix NT and the r.h.s. [w,w 0] to obtain the coefficients of the difference scheme.

Note that the r.h.s. of the system of equations involves functions {wnodal} in the first version of the algo-
rithm and numbers [w,w 0] in the second version. While working with numbers is easier, the nodal functions
can be useful and may be reused for different test functionals.

Variational-difference schemes (18) and (22) are consistent essentially by construction [109] (see also Sec-
tions 4.4 and 4.5 for related proofs).



Fig. 4. A �machine� for variational-difference FLAME schemes. (Reprinted by permission from [109] �2004 IEEE.)
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Graphically, the procedure can be viewed as a ‘‘machine’’ for generating variational-difference FLAME
schemes (Fig. 4).

Remark 1. With this generic setup, no blanket claim of convergence of the variational scheme can be
made. The difference scheme is consistent by construction [109] but its stability needs to be examined in
each particular case.

Remark 2. Implementation of (18) or (22) implies solving a small system of linear equations whose dimen-
sion is equal to the stencil size.

Volume integration in (18) is avoided if the test functional is taken to be either the Dirac delta or, alter-
natively, the characteristic (‘‘window’’) function P(x(i)) of some domain x(i) �� X(i): that is, P(x(i) = 1 in-
side x(i) and zero outside. With the ‘‘window’’ function, one arrives at a control volume (flux balance)
scheme with surface integration. (Typically, x(i) is the same size as a grid cell but centered at a node.)
The computational cost is asymptotically proportional to the number of grid nodes but depends on the
numerical quadratures used to compute the surface fluxes.

3.4. Summary of the variational-difference setup

The setup of variational FLAME schemes can be summarized as follows:

– A system of overlapping patches is introduced.
– Desired approximating functions are used within each patch, independently of other patches.
– Simple regular grids can be used.
– When patches overlap, the approximation is generally multivalued (as is also the case in standard FD
analysis).

– The nodal solution on the grid is single-valued and provides the necessary ‘‘information transfer’’
between the overlapping patches.

– Since a unique globally continuous interpolant is not defined, the Galerkin method in H1(X) is generally
not applicable. However, within each patch there is a sufficiently smooth local approximation (12), and a
general moment (weighted residual) method can be applied, provided that the support of the test func-
tion is contained entirely within the patch.

In particular, by introducing the standard �control volume� box centered at a given node of the grid and
setting the test function equal to one within that control volume and zero elsewhere, one arrives at a flux
balance scheme. This is a generalization of the standard �control volume� technique to any set of suitably
defined local approximating functions. Only surface integrals, rather than volume quadratures, are needed,
which greatly reduces the computational overhead.
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Application examples of the variational-difference version of FLAME were already given in [109]. We
now turn to the nonvariational version that in many respects is more appealing.
4. Non-variational Trefftz-FLAME schemes with flexible local approximation

4.1. Construction of the nonvariational schemes

The schemes described in this section are much simpler and yet in many cases more efficient and accurate
than the variational-difference schemes considered previously. The overall setup is conceptually the same as
before: the computational domain X is covered with a set of overlapping �patches� (subdomains) X(i); each
patch contains a stencil of an auxiliary global Cartesian (for simplicity) grid.

Let us initially assume that the underlying differential equation within a patch X(i) is homogeneous:
4 Th
FLAM
Lu ¼ 0 in XðiÞ; ð23Þ

where L is a differential operator (one may want to have in mind the elliptic Eq. (5) as an example).

Within each patch, the approximate solution uðiÞh is sought as a linear combination of m(i) basis functions
fwðiÞ

a g (12) (repeated here for easy reference):
uðiÞh ¼
X
a

cðiÞa wðiÞ
a . ð24Þ
The novelty now is that we consider Trefftz methods, where the approximating functions w(i) satisfy the
underlying differential equation (23) exactly. Trefftz methods are well known in the variational context
[56]; in contrast, here a purely finite-difference approach is taken and will prove to be attractive in a variety
of cases.4

As before (see Section 3.3), the relationship between the vectors of coefficients c(i) and the nodal values is
N ðiÞcðiÞ ¼ uðiÞ; ð25Þ

where matrix N(i) (16) comprises the nodal values of all basis functions at all stencil points.

In the Trefftz version, since the basis functions by construction already satisfy the underlying differential
equation, so does the approximate solution uðiÞh , automatically. Therefore there is no need to apply a func-
tional as in (13), (14), (18) and (22) to test this solution, which is a major simplification. In the nonvari-
ational Trefftz-FLAME schemes there will typically be fewer approximating functions than nodes within
the patch – most frequently, m functions for M = m + 1 stencil nodes. The nodal matrix N(i) is thus in gen-
eral rectangular. (Compare this with the variational-difference formulation of the previous section, where
the number of basis functions is typically equal to the number of nodes.) The number of approximating
functions may be different for different patches, but for brevity of notation this is not explicitly indicated.

In the simplest illustrative 1D example, with m = 2 basis functions w1,2 at three grid points xi�1, xi, xi+1,
matrix N(i) is
N ðiÞ ¼
w1ðxi�1Þ w2ðxi�1Þ
w1ðxiÞ w2ðxiÞ
w1ðxiþ1Þ w2ðxiþ1Þ

0
B@

1
CA. ð26Þ
e starting point for the author�s development of Trefftz-FLAME schemes was Gary Friedman�s nonvariational version of
E for unbounded problems [42,52].
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Since there are only two independent parameters (coefficients in the linear combination of w1,2), the three
nodal values on the stencil must be linearly related: s�1ui�1 + s0ui + s+1 ui+1 = 0 for some coefficients s0,
s±1. More generally for an M-point stencil, a vector of coefficients s(i) 2 RM of the difference scheme is
sought to yield
sðiÞTuðiÞ ¼ 0 ð27Þ

for the nodal values u(i) of any function uðiÞh of form (24). Throughout the paper, vector s(i) is treated as a
column matrix. Due to (25) and (27),
sðiÞTN ðiÞcðiÞ ¼ 0. ð28Þ
For this to hold for any set of coefficients c(i), one must have
sðiÞ 2 NullðN ðiÞTÞ. ð29Þ
If the null space is of dimension one, s(i) represents the desired scheme (up to an arbitrary factor), and (29) is
the principal expression of the Trefftz-FLAME scheme. The meaning of (29) is quite simple: each equation
in the system N(i)Ts(i) = 0 implies that the respective basis function satisfies the difference scheme with coef-
ficients s(i). There is thus an elegant duality feature between the continuous and discrete problems: any lin-
ear combination of the basis functions satisfies both the differential equation (due to the choice of the
�Trefftz� basis) and the difference equation with coefficients s(i).

As we shall see in Section 4, definition (29), despite its simplicity, is surprisingly rich. For different
choices of basis functions and stencils it gives rise to a variety of difference schemes.

While there is no obvious way to determine the dimension of the null space in (29) a priori, for several
classes of problems considered later the dimension is indeed one. If the null space is empty, the construction
of the Trefftz-FLAME scheme fails, and one may want to either increase the size of the stencil or reduce the
basis set. If the dimension of the null space is greater than one, there are two general options. First, the
stencil and/or the basis can be adjusted. Second, one may use the additional freedom in the choice of
the coefficients s(i) to seek an ‘‘optimal’’ (in some sense) scheme as a linear combination of the independent
null space vectors. For example, it may be desirable to find a diagonally dominant scheme.

An alternative interpretation of (29) is that s(i) is orthogonal to the image of N(i) due to (28), hence s(i) is
in the null space of N(i)T. In the complex case, though, orthogonality should not be understood in terms of
the standard complex inner product which, unlike (28), includes conjugates.

Once the basis and the stencil are chosen, the Trefftz-FLAME scheme is generated in a very simple way:

– Form matrix N(i) of the nodal values of the basis functions.
– Find the null space of N(i)T.

Proposition 1. The Trefftz-FLAME scheme defined by (29) is invariant with respect to the choice of the basis

in the local space WðiÞ � spanfwðiÞ
a g.

Proof. A linear transformation of the w-basis replaces NT with QNT, where Q is a nonsingular matrix,
which does not affect the null space. h

The algorithm is much simpler and yet in many cases more effective (see examples below) than the variational
version of FLAME. It can be sketched as a �machine� for generating Trefftz-FLAME schemes (Fig. 5). As in
the variational version, it should be stressed that the algorithm is heuristic and no blanket claim of conver-
gence can be made. The schemes need to be considered on a case-by-case basis, which is done for a variety of
problems in Section 4. However, consistency can be proven (Section 4.4) in general, and convergence then
follows for the subclass of schemes with a monotone difference operator (Section 4.5). Construction of
monotone Trefftz-FLAME schemes for electromagnetic multiparticle problems is discussed in [111].



Fig. 5. A �machine� for Trefftz-FLAME schemes: the algorithm is substantially simpler than the variational version. (Reprinted by
permission from [111] �2005 IEEE.)
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4.2. The treatment of boundary conditions

Note that in the FLAME framework approximations over different stencils are completely independent
from one another. Therefore, if the domain boundary conditions are of standard types and no special
behavior of the solution at the boundaries is manifest, one can simply employ any standard FD scheme
at the boundary.5

If the solution is known to exhibit some special features at the boundary, it may be possible to incorpo-
rate these features into the FLAME scheme. One example is perfectly matched layers (PML) for electro-
magnetic and acoustic wave propagation considered briefly in Section 5.10 and in some more detail in
[111]. The research on FLAME-PML conditions is ongoing.

4.3. Trefftz-FLAME schemes for inhomogeneous and nonlinear equations

So far we considered Trefftz-FLAME schemes only for homogeneous equations (i.e. with the zero right-
hand side within a given patch). For inhomogeneous equations of the form
5 Sin
to say
Lu ¼ f in XðiÞ ð30Þ

a natural approach is to split the solution up into a particular solution uðiÞf of the inhomogeneous equation
and the remainder uðiÞ0 satisfying the homogeneous one:
u ¼ uðiÞ0 þ uðiÞf ; ð31Þ
LuðiÞ0 ¼ 0; LuðiÞf ¼ f . ð32Þ
Superscript (i) emphasizes that the splitting is local, i.e. needs to be introduced only within its respective
patch X(i) containing the grid stencil around node i. Since uðiÞf is local (and in particular need not satisfy
any exterior boundary conditions), it is usually relatively easy to construct.

Let a Trefftz-FLAME scheme s(i) be generated for a given set of basis functions and assume that the con-
sistency error � for this scheme tends to zero as h ! 0; that is,
sðiÞTNðiÞuðiÞ0 ¼ � � � h; uðiÞ0
� �

! 0 as grid size h ! 0; ð33Þ
where NðiÞ, as before, denotes the nodal values of a function on stencil (i). Then clearly
ce most Taylor-based schemes are particular cases of FLAME (with polynomial basis functions), it would be technically correct
that the whole set of difference equations, including the treatment of boundary conditions, is based on FLAME schemes.
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sðiÞTNðiÞu ¼ sðiÞTNðiÞu0 þ sðiÞTNðiÞuf ¼ sðiÞTNðiÞuf þ �.
This immediately implies that the consistency error of the difference scheme
sðiÞTuh ¼ sðiÞTNðiÞuf ð34Þ

is �, i.e. exactly the same as for the homogeneous case. (The Euclidean vector uh of nodal values does not
need the superscript because the nodal values are unique and do not depend on the patch.) Note that
there are absolutely no constraints on the smoothness of uðiÞf , provided that its nodal values are well
defined. The particular solution uðiÞf can even be singular as long as the singularity point does not coincide
with a grid node. For example, in [108] difference schemes of this kind were constructed for the Coulomb
potential of point charges. An electrostatic problem with a line charge source is solved in a similar way in
[111].

For nonlinear problems, the Newton–Raphson method is traditionally used for the discrete system of
equations. In connection with FLAME schemes, Newton–Raphson–Kantorovich iterations are applied
to the original continuous problem rather than the discrete one. Let the equation be
Lu ¼ f ; ð35Þ

where L is a differentiable operator. The (k + 1)th approximation uk+1 to the exact solution is obtained
from the kth approximation uk by linearization in the following way. If u = uk + du,
Lu ¼ Lðuk þ duÞ ¼ Luk þ L0ðukÞduþ oðkdukÞ; ð36Þ
where L 0 is the Fréchet derivative of L. Ignoring higher-order terms, one gets an approximation duk for du
by solving the linear system
L0ðukÞduk ¼ f � Luk ð37Þ

and then updates the solution:
ukþ1 ¼ uk þ duk. ð38Þ

Equivalently,
ukþ1 ¼ uk þ ðL0ðukÞÞ�1ðf � LukÞ. ð39Þ

Along with an initial guess u0, iterative process (37), (38) – or just (39) – defines the Newton–Raphson–
Kantorovich algorithm. Trefftz-FLAME schemes can then be applied to L 0 (which of course is a linear
operator by definition), provided that a suitable set of local approximating functions can be found.

4.4. Consistency of the schemes

Let us rewrite the patch-wise difference equation (34) in matrix form as a global system of difference
equations for the underlying differential equation Lu = f:
Lhuh ¼ f
h

with f
hi
¼ sðiÞTNðiÞuðiÞf ð40Þ
(if the differential equation is homogeneous within the patch, then uðiÞf ¼ 0). Note that the ith row of matrix
Lh contains the coefficients of scheme s(i)T and, in addition, a (large) number of zero entries. We shall as-
sume that the equations can be scaled in such a way that
c1f ðrÞ 6 f
hi
6 c2f ðrÞ 8r 2 XðiÞ; c1;2 > 0; ð41Þ
where c1,2 do not depend on i and h. This scaling is important because otherwise e.g. the meaningless
scheme h100ui = 0 would technically be consistent (as defined below) for any differential equation.
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The consistency error of scheme (34) and (40) is, by definition, obtained by substituting the nodal values
of the exact solution u* into the difference equation. We shall call this scheme consistent if, with scaling
(41), the following condition holds:
consistency error � �cðhÞ ¼ max
i

sðiÞTNðiÞu� � f
hi

��� ��� ¼ max
i

sðiÞTðNðiÞu� � uhiÞ
�� �� ! 0 as h ! 0. ð42Þ
For FLAME schemes, consistency follows directly from the approximation properties of the basis set as
long as (41) holds. Indeed, let �a(h) be the approximation error of the ‘‘homogeneous part’’ uðiÞ0 of the exact
solution u* in a patch X(i):
�aðhÞ ¼ min
cðiÞ2Rm

u� � uðiÞf �
Xm
a¼1

cðiÞa wðiÞ
a

�����
�����
1

. ð43Þ
Equivalently, there exists a coefficient vector c(i) 2 Rm such that
u� ¼ uðiÞf þ
Xm
a¼1

cðiÞa wðiÞ
a þ g; gk k1 ¼ �aðhÞ. ð44Þ
For the nodal values, one then has due to (25)
NðiÞu� ¼ NðiÞuðiÞf þ N ðiÞcðiÞ þ g ð45Þ
where g = NðiÞg is the vector of nodal values of g on stencil i and N(i) is (as always) the matrix of nodal
values of the basis functions. Due to (44),
kgk1 6 �aðhÞ
and due to (45), the consistency error for scheme (40) with coefficients (29) is
�cðhÞj j ¼ max
i

sðiÞTNðiÞu� � sðiÞTNðiÞuðiÞf
��� ��� ¼ max

i
sðiÞTðN ðiÞcðiÞ þ gÞ
��� ��� ¼ max

i
sðiÞTN ðiÞcðiÞ þ sðiÞTg
��� ���

¼ max
i

sðiÞTg
��� ��� 6 M�aðhÞ; ð46Þ
which shows that the consistency error is bounded by the approximation error.

4.5. Convergence of the schemes

For conventional difference schemes and the Poisson equation, convergence is proved in standard texts
(e.g. [80] or [104]). Following the substance of these proofs, one arrives at a more general convergence result
(Theorem 1 below). The following lemma will be needed.

Lemma 1. If the scheme is scaled according to (41) and the consistency condition (42) holds, there exists a

reference nodal vector u1h such that
u1h 6 U 1 and Lhu1h P r1 > 0 ð47Þ

with numbers U1 and r1 independent of h. (All vector inequalities are understood entry-wise.)

[A remark on notation: subscript 1 is meant to show that, as seen from the proof below, the auxiliary
potential u1h may be related to the solution of the differential equation with the unit right-hand side.]

Proof. The reference potential u1h can be found explicitly by considering the auxiliary problem
Lu1 ¼ 1 ð48Þ
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with the same boundary conditions as the original problem. Condition (42) applied to the nodal values of u1
implies that for sufficiently small h the consistency error will fall below 1

2
c1, where c1 is the parameter in

(41):
sðiÞTNðiÞu1 � fhi
�� �� 6 1

2
c1.
Therefore, since f = 1 in (41),
jsðiÞTNðiÞu1j P jfhij � fhi � sðiÞTNðiÞu1
�� �� P c1 �

1

2
c1 ¼

1

2
c1 ð49Þ
(the vector inequality is understood entry-wise). Thus one can set u1h ¼ LhNu1, with r1 ¼ 1
2
c1 and

U1 = iu1i1. h

Theorem 1. Let the following conditions hold for difference schemes (34) and (40):

1. Consistency in the sense of (42) and (41).

notonicity : if Lhx P 0; then x P 0. ð50Þ
2: Mo

Then the numerical solution converges in the nodal norm, and
kuh �Nu�k1 6 �cU 1=r1; ð51Þ

where r1 is the parameter in (47).

Proof. Let �h ¼ uh �Nu�. By consistency,
Lh�h 6 �c 6 �cLhu1h=r1 ¼ Lhð�cu1h=r1Þ;
where (47) was used. Hence due to monotonicity
�h 6 �cu1h=r1. ð52Þ
It then also follows that
�h P ��cu1h=r1. ð53Þ

Indeed, if that were not true, one would have (��h)P �cu1h/r1, which would contradict the error estimate
(52) for the system with (�f) instead of f in the right-hand side. h

Diagonal dominance of matrix Lh is known to be a sufficient condition for monotonicity if the diagonal
entries of Lh are positive and the off-diagonal ones are nonpositive [113,114]. As a measure of the relative
magnitude of the diagonal elements, one can use
min
i

Lh;iij jP
j

Lh;ij

�� �� ð54Þ
with matrix Lh being diagonally dominant for q = 0.5 and diagonal for q = 1.
Diagonal dominance is a strong condition that does not hold in general. However, diagonally dominant

Trefftz-FLAME schemes can be constructed for electro- and magnetostatic multiparticle problems of Sec-
tion 5.10 [111].

Not surprisingly, estimate (51) is the ratio of approximation and stability parameters. Even if the mono-
tonicity condition of the theorem is not satisfied, this estimate may still be useful as a heuristic criterion,
with the value of q (54) monitored in the actual computation. The approximation accuracy �a is key. In fact,
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the �Trefftz� bases are effective not just because they (by definition) satisfy the underlying differential equa-
tion, but because they happen to have superior approximation properties in many cases (see e.g. Section 5.5
and 5.6).
5. Trefftz-FLAME schemes: case studies

5.1. The 1D Laplace equation

Obviously, the 1D Laplace equation is trivial and is used here only to provide the simplest possible
example of Trefftz-FLAME schemes. For convenience, consider a uniform grid with size h, choose a 3-
point stencil and place the origin at the middle node. Two basis functions satisfying the Laplace equation
are
6 As
w1 ¼ 1; w2 ¼ x.
Then, since the coordinates of the stencil nodes are [�h, 0,h], the (transposed) nodal matrix (16) is
NT ¼
1 1 1

�h 0 h

� �
and the Trefftz-FLAME difference scheme is6
s ¼ NullðNTÞ ¼ ½1;�2; 1� ðtimes an arbitrary coefficientÞ;

which coincides with the standard 3-point scheme for the Laplace equation.

5.2. The 1D Helmholtz and convection–diffusion equations

A less trivial case is the 1D Helmholtz equation
d2u
dx2

� j2u ¼ 0
with any complex j. Let us choose the same 3-point stencil [�h, 0,h] as before and two basis functions sat-
isfying the Helmholtz equation:
w1 ¼ expðjxÞ; w2 ¼ expð�jxÞ.
Then the matrix of nodal values (16) is
NT ¼
expð�jhÞ 1 expðjhÞ
expðjhÞ 1 expð�jhÞ

� �
and the resultant difference scheme is
s ¼ NullðNTÞ ¼ ½1;�2 coshðjhÞ; 1�. ð55Þ
Since the theoretical solution in this 1D case is exactly representable as a linear combination of the chosen
basis functions, the difference scheme yields the exact solution (in practice, up to the round-off error). This
scheme is known and has been derived in a different way by Mickens [78] (see also [39,53]).
a slight abuse of notation, the square-bracketed arrays (such as [1,�2,1]) do not distinguish between row and column vectors.
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Quite similarly, for the 1D convection–diffusion equation with constant coefficients
D
d2u
dx2

� b
du
dx

¼ 0; D > 0
one has two �Trefftz� basis functions:
w1 ¼ 1; w2 ¼ expðqxÞ; q ¼ b=D.
For the 3-point stencil [�h, 0,h], the (transposed) matrix of nodal values (16) is
NT ¼
1 1 1

expð�qhÞ 1 expðqhÞ

� �
and the Trefftz-FLAME difference scheme is
s ¼ NullðNTÞ ¼ expðqhÞ
expðqhÞ � 1

;� expðqhÞ þ 1

expðqhÞ � 1
;

1

expðqhÞ � 1

� �
ð56Þ
(up to an arbitrary factor). This coincides (in the case of the homogeneous convection–diffusion equation
with constant coefficients) with the well-known exponentially fitted scheme (see e.g. [102,92,88]).

5.3. The 1D heat equation with variable material parameter

Consider the 1D homogeneous heat conduction equation:
d

dx
kðxÞ du

dx

� �
¼ 0; ð57Þ
where k(x) is the material parameter. Two approximating functions for the FLAME-Trefftz scheme can be
chosen as linearly independent solutions of this equation on the interval [xk�1,xk+1]:
w1 ¼ 1; w2 ¼
Z x

xk

k�1ðnÞdn.
With this basis, the transposed nodal matrix (16) for the stencil [xk�1,xk,xk + 1] is
NT ¼
1 1 1

�Rk�1 0 Rkþ1

� �
;

where Rk�1 ¼
R xk
xk�1

k�1ðnÞdn, Rkþ1 ¼
R xkþ1

xk
k�1ðnÞdn have the physical meaning of thermal resistances of the

respective segments. The difference scheme is, up to an arbitrary factor,
s ¼ NullðNTÞ ¼ ½�R�1
k�1;R

�1
k�1 þ R�1

kþ1;�R�1
kþ1�; ð58Þ
which has a clear interpretation as a flux balance equation:
R�1
k�1ðuk � uk�1Þ þ R�1

kþ1ðuk � ukþ1Þ ¼ 0.
Such schemes are indeed typically derived from flux balance considerations (see e.g. the ‘‘homogeneous
schemes’’ in [95]) but, as we can now see, are a natural particular case of Trefftz-FLAME.

If the integrals in the expressions for thermal resistances R can be calculated exactly, the scheme is itself
exact, i.e. the consistency error is zero (the theoretical solution satisfies the FD equation). This holds even if
the material parameter k is discontinuous.

5.4. The 2D and 3D laplace equation

Consider a regular rectangular grid, for simplicity with spacing h the same in both directions, and the
standard 5-point stencil. The origin of the coordinate system is placed for convenience at the central node
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of the stencil. With four basis functions [1,x,y,x2 � y2] satisfying the Laplace equation, the nodal matrix
(16) becomes
NT ¼

1 1 1 1 1

0 �h 0 h 0

h 0 0 0 �h

�h2 h2 0 h2 �h2

0
BBB@

1
CCCA.
The difference scheme is then Null(NT) = [�1,�1,4,�1,�1] (times an arbitrary constant), which coincides
with the standard 5-point scheme for the Laplace equation. A more general case with different mesh sizes in
the x- and y-directions is handled in a completely similar way.

The 3D case is also fully analogous. With six basis functions {1,x,y,z,x2 � y2,x2 � z2} and the standard
7-point stencil on a uniform grid, one arrives, after computing the null space of the respective 6 · 7 matrix
NT, at the standard 7-point scheme with the coefficients [�1,�1,�1,6,�1,�1,�1]. As in 2D, the case of
different mesh sizes in the x-, y- and z-directions does not present any difficulty.

5.5. The fourth order 9-point Mehrstellen scheme for the Laplace equation in 2D

The solution is, by definition, a harmonic function. Harmonic polynomials are known to provide an
excellent (in some sense, even optimal [6]) approximation of harmonic functions [1,6,13,75]. The following
result is cited in [6]:

Theorem (Szegö). Let X � R2 be a simply connected bounded Lipschitz domain. Let ~X �� X and assume that

u 2 L2ð~XÞ is harmonic on ~X. Then there is a sequence ðupÞ1p¼0 of harmonic polynomials of degree p such that
u� up
�� ��

L1ðXÞ 6 c expð�cpÞkukL2ð~XÞ;

krðu� upÞkL1ðXÞ 6 c expð�cpÞkukL2ð~XÞ; ð59Þ
where c, c > 0 depend only on X, ~X.

For comparison, the H1-norm error estimate in the standard FEM is

Theorem. [23,22,8] For a family of quasi-uniform meshes with elements of order p and maximum diameter h,

the approximation error in the corresponding finite element space Vn is
inf
v2V n

ku� vkH1ðXÞ ¼ Chl�1p�ðk�1ÞkukHkðXÞ;
where l = min(p + 1,k) and c is a constant independent of h, p, and u.

For a fixed polynomial order p, the FEM and harmonic polynomial estimates are similar (factor O(hp)
vs. O([exp(�c)]p) if the solution is sufficiently smooth. However, the FEM approximation is realized in a
much wider space containing all polynomials up to order p, not just the harmonic ones. For solving the
Laplace equation, the standard FE basis set can thus be viewed as having substantial redundancy that is
eliminated by using the harmonic basis.

With these observations in mind, one may choose the basis functions as harmonic polynomials in x, y up
to order 4, namely, {1,x,y,xy,x2 � y2,x(x2 � 3y2),y(3x2 � y2), (x2 � y2)xy, (x2 � 2xy � y2) (x2 + 2xy
� y2)}. Then for a 3 · 3 stencil of adjacent nodes of a uniform Cartesian grid, the computation of the nodal
matrix (16) (transposed) and its null space is simple with any symbolic algebra package. If the mesh size is
equal in both x- and y-directions, the resultant scheme has order 6. Its coefficients are 20 for the central
node, �4 for the four mid-edge nodes, and �1 for the four corner nodes of the stencil. In the standard texts
[28,95], this scheme is developed by manipulating the Taylor expansions for the solution and its derivatives.



Fig. 6. For the Laplace equation, this 4th-order �Mehrstellen�–Collatz scheme on the 19-point stencil is a direct particular case of
Trefftz-FLAME.
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5.6. The 4th order 19-point Mehrstellen scheme for the Laplace equation in 3D

Construction of the scheme is analogous to the 2D case. The 19-point stencil is obtained by considering a
3 · 3 · 3 cluster of adjacent nodes and then discarding the eight corner nodes. The basis functions are cho-
sen as the 25 independent harmonic polynomials in x, y, z up to order 4. Computation of the matrix of
nodal values (16) and of the null space of its transpose is straightforward by symbolic algebra. The resultant
difference scheme is shown in Fig. 6, where the 19 stencil nodes are split into three layers for clarity and the
mesh size is assumed the same in all three directions. This 19-point 4th-order scheme is well known (it was
introduced and called a �Mehrstellen� scheme by Collatz [28]; see also [95]) but is typically derived from
completely different considerations and viewed as a separate type of scheme.7 We can now see, however,
that in the Trefftz-FLAME framework Mehrstellen schemes and classic Taylor-based schemes for the La-
place equation stem from the same root – namely, the nullspace equation (29). The scheme is defined by the
chosen stencil and a harmonic polynomial basis.

As a side note, the 19-point Mehrstellen scheme, due to its geometrically compact stencil, reduces pro-
cessor communication in parallel solvers and therefore has gained popularity in computationally intensive
applications of physical chemistry and quantum chemistry: electrostatic fields of multiple charges, the Pois-
son–Boltzmann equation in colloidal and protein simulation, and the Kohn–Sham equation of density
functional theory [19].

5.7. The 1D Schrödinger equation. FLAME schemes by variation of parameters

This test problem is borrowed from the comparison study by Chen et al. [21] of several FD schemes for
the boundary value (rather than eigenvalue) problem for the 1D Schrödinger equation over a given interval
[a,b].
7 A g
�u00 þ ðV ðxÞ � EÞu ¼ 0; uðaÞ ¼ ua; uðbÞ ¼ ub. ð60Þ

The specific numerical example is the fifth energy level of the harmonic oscillator, with V(x) = x2 and
E = 11 ( = 2 · 5 + 1). For testing and verification, boundary conditions are taken from the analytical solu-
tion, and as in [21] the interval [a,b] is [�2,2]. The exact solution is
uexact ¼ ð15x� 20x3 þ 4x5Þ expð�x2=2Þ. ð61Þ
eneralization of the Mehrstellen schemes, known as the HODIE schemes [71], will not be considered here.
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To construct a Trefftz-FLAME scheme for (60) on a stencil [xi�1,xi,xi + 1] (where xi±1 = xi ± h), one would
need to take two independent local solutions of the Schrödinger equation as the FLAME basis functions.
The exact solution in our example is reserved exclusively for verification and error analysis. We shall con-
struct Trefftz-FLAME scheme pretending that the theoretical solution is not known, as would be the case in
general for an arbitrary potential V(x).

Thus in lieu of the exact solutions the basis set will contain their approximations. There are at least two
ways to construct such approximations. This subsection uses a perturbation technique that produces a 4th-
order scheme. The next subsection employs the Taylor expansion that leads to 3-point schemes of arbi-
trarily high order.

At an arbitrary point x0 let
8 Th
V ðxÞ ¼ j2 þ dV ; where j2 � V ðx0Þ; ð62Þ
uðxÞ ¼ u0ðxÞ þ duðxÞ; ð63Þ
u0ðxÞ ¼ cþ expðjxÞ þ c� expð�jxÞ with arbitrary cþ; c�. ð64Þ
Substituting these expressions into the Schrödinger equation and ignoring the higher order term, one gets
the perturbation equation
du00 � j2du ¼ dVu0. ð65Þ

Solving this equation by variation of parameters, one obtains after some algebra
uðxÞ ¼ u0ðxÞ þ duðxÞ

¼ u0ðxÞ þ
1

2
expðjxÞ

Z x

x0

u0ðnÞ expð�jnÞdV ðnÞdn� 1

2
expð�jxÞ

Z x

x0

u0ðnÞ expðjnÞdV ðnÞdn. ð66Þ
Two independent sets of values for c+, c� then yield two basis functions for FLAME.
Fig. 7 compares convergence of several schemes: the well-known Numerov scheme, the ‘‘Numerov–Mic-

kens scheme’’ [21], Trefftz-FLAME, and the Mickens scheme [78,21]. The first three schemes are all of order
four, but the FLAME errors are much smaller. In the following section, the FLAME error is further re-
duced, in many cases to machine precision.

5.8. Super-high-order FLAME schemes for the 1D Schrödinger equation

For sufficiently smooth potentials V(x), as in our example of the harmonic oscillator, one can expand the
potential and the solution into a Taylor series around the central stencil node xi to obtain two local inde-
pendent solutions with any desired order of accuracy. Consequently, the order of the FLAME scheme can
also be arbitrarily high, even though the stencil still has only three points.

For the 20th-order scheme as an example, the roundoff level is reached for the uniform grid with just 10–
15 nodes (Table 1). For a fixed grid size and varying order of the scheme, the error falls off very rapidly as
the order is increased and quickly saturates at the roundoff level (Fig. 8).

5.9. A singular equation

Reddien and Schumaker [93] (RS) proposed a spline-based collocation method for 1D singular bound-
ary value problems and use the following example:8
ðx0.5u0Þ0 � x0.5u ¼ 0; 0 < x < 1; uð0Þ ¼ 1; uð1Þ ¼ 0. ð67Þ
is example is as a result of my short communication with Larry L. Schumaker and Douglas N. Arnold.



Fig. 7. Convergence of the variation of parameters – FLAME scheme for the Schrödinger equation. Comparison with other schemes
described in [21] is very favorable (note the logarithmic scale). As the Numerov and Numerov–Mickens schemes, the FLAME scheme
is of 4th-order but its error is much smaller. The Taylor version of FLAME (see below) performs much better still.

Fig. 8. Error vs. order of the Trefftz-FLAME scheme for the model Schrödinger equation.

Table 1
Errors for the 3-point FLAME scheme of order 20

Number of nodes Mean absolute error

7 2.14E�10
11 2.06E�14
15 1.75E�15
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Here we apply the nonvariational FLAME method to the same example and compare the results. A 3-point
stencil on a uniform grid is used for FLAME. The two basis functions for FLAME are constructed sepa-
rately for stencil points in the vicinity of the singularity point x = 0 and away from zero.

(1) Let the midpoint xi of the ith stencil be sufficiently far away from zero (the singularity point of the
differential equation): xi > d, where d is a chosen threshold. Expanding u over the ith stencil into the Taylor
series with respect to n = x � xi:
u ¼
X1
k¼0

ckn
k ð68Þ
one obtains, by straightforward calculation, the following recursion:
ckþ2 ¼
ckxi þ ck�1 � ckþ1ðk þ 1Þðk þ 1

2
Þ

xiðk þ 1Þðk þ 2Þ ; k ¼ 0; 1; . . . ; ð69Þ



Table 2
Numerical values of the solution at x = 0.5: FLAME vs. other methods

n FLAME, K = 6 FLAME, K = 12 RS [93] Jamet [60]

8 0.25204513942296 0.252041978171219 0.25305 0.29038
16 0.252044597187729 0.252041977565477 0.25223 0.27826

8192 0.252042091673094 0.252041976551393 0.25310

The number of grid subdivisions and the order of the scheme in FLAME varied.

Table 3
Numerical errors of the solution at x = 0.5: FLAME vs. other methods.

n FLAME, K = 6 FLAME, K = 12 RS [93] Jamet [60]

8 3.16E�06 1.68E�09 1.01E�03 3.83E�02
16 2.62E�06 1.07E�09 1.88E�04 2.62E�02

8192 1.15E�07 5.80E�11 1.06E�03

The result for the FLAME scheme of order 40 with 8192 grid subdivisions was treated as �exact� for the purposes of error evaluation.
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where the coefficients with negative indices are understood to be zero. Two basis functions are obtained by
choosing two independent sets of starting values for c0,1 for the recursion and by retaining a finite number
of terms, k = K, in series (68).

(2) For xi < d, the approach is similar but the series expansion is different:
u ¼
X1
k¼0

bkxk=2. ð70Þ
Straightforward algebra again yields
8b0; b1; b2 ¼ b3 ¼ 0;

bkþ2 ¼
4bk�2

ðk þ 1Þðk þ 2Þ ; k ¼ 0; 1; . . . ð71Þ
Two independent basis functions are then obtained in the same manner as above, with terms k 6 2K re-
tained in (70).

Numerical values of the solution at x = 0.5 are given in [93,23] and serve as a basis for accuracy com-
parison. As Tables 2 and 3 shown below, Trefftz-FLAME gives orders of magnitude higher accuracy than
the methods of [93,23]. The price for this accuracy gain is the analytical work needed for �preprocessing�, i.e.
for deriving the FLAME basis functions.

This example is intended to serve as an illustration of the capabilities of FLAME and its possible appli-
cations; it does not imply that FLAME is necessarily better than all methods designed for singular equa-
tions. Many other effective techniques have been developed; see e.g. [67].

5.10. A summary of electromagnetic applications

Many electromagnetic applications of the Trefftz-FLAME schemes are described in [111]. These examples
are briefly summarized here to provide amore complete picture of the existing applications of FLAME. In the
following subsection a new simulation example of two coupled cylindrical nanoparticles is presented.

5.10.1. A line charge near a slanted boundary
This problem was chosen to illustrate how FLAME schemes can rectify the notorious �staircase� effect

that occurs when slanted or curved boundaries are rendered on Cartesian grids. The electrostatic field is
generated by a line charge located near a slanted material interface boundary between air (relative dielectric
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constant � = 1) and water (� = 80). This can be viewed as a drastically simplified 2D version of electrostatic
problems in macro- and biomolecular simulation [98,94,46].

Four basis functions on a five-point stencil at the interface boundary were obtained by matching poly-
nomial approximations in the two media via the boundary conditions. The Trefftz-FLAME result is sub-
stantially more accurate than solutions obtained with the standard flux-balance scheme and with the
previously used variational version of FLAME.

5.10.2. A polarized elliptic particle

A dielectric cylinder, with an elliptic cross-section, is immersed in a uniform external field. An analytical
solution [100] is imposed, for testing and verification purposes, as a Dirichlet condition on the exterior
boundary of the domain. The usual 5-point stencil in 2D is used.

A nonstandard feature of the Trefftz-FLAME scheme in this problem is that, four basis functions being
difficult to generate, only three were used. (The first basis function is simply equal to one, and the other two
correspond to the analytical solutions for the external field applied in the x- and y-directions, respectively.)
This arrangement produces a two-dimensional null space of the nodal matrix in FLAME. It then turns out
to be possible to find a linear combination of the two independent difference schemes with a dominant diag-
onal entry, yielding a monotone difference operator.

5.10.3. Static fields of polarized or magnetized cylindrical particles (2D)

As a simple illustration of the efficiency of Trefftz-FLAME, compare two meshes (Fig. 9) that give about
the same level of accuracy for a simple 2D test: a cylindrical magnetic particle with relative permeability
l = 100 immersed in a uniform external field. An analytical solution for this problem is easily available
and was imposed, for testing and verification purposes, as a Dirichlet condition on the domain boundary.
The FE mesh has 125,665 degrees of freedom (d.o.f.); the relative error in the potential at the nodes is
2.07 · 10�8. The FLAME grid has 900 d.o.f. (30 · 30), and the relative error in the potential at the nodes
is 2.77 · 10�8 if 9-point (3 · 3) stencils are used.

5.10.4. Static fields of polarized or magnetized spherical particles (3D)

Problems of this type arise, in particular, in the simulation of colloidal systems [36,33]. Colloidal parti-
cles typically carry a surface electric charge giving rise to an electrostatic field. In some cases, particles can
also be magnetic; controlling them by external magnetic fields may have interesting applications in some
Fig. 9. Two meshes yielding about the same level of accuracy for the magnetic particle problem. The FE mesh has 31,537 nodes, 62,592
second order triangular elements and 125,665 degrees of freedom. The FLAME grid has 900 degrees of freedom.
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emerging areas of nanoscale assembly [121,122,90]. Although the equation itself is simple, computationally
the problem is quite challenging due to many-body interactions and the inhomogeneities.

In a solvent without salt (or in air) the electrostatic potential is governed by the Laplace equation both
inside and outside the particles, with the standard conditions at particle boundaries.

For monovalent salts, the potential in the solvent can be described, with a good level of accuracy, by the
Poisson–Boltzmann equation. (For multivalent salts, the correlation effects between the ions of the salt
complicate the matter.)

In Trefftz-FLAME schemes, a 7-point stencil is used throughout the computational domain. In the vicin-
ity of a particle, the local basis functions are obtained via spherical harmonics (which obviously have dif-
ferent forms for the Laplace and the linearized Poisson–Boltzmann equation). Away from particles, the
standard 7-point scheme is employed.

5.10.5. Scattering from a dielectric cylinder
In this classic example, a monochromatic plane wave impinges on a dielectric circular cylinder and gets

scattered. The analytical solution is available via cylindrical harmonics [54] and can be used for verification
and error analysis. The basis functions in FLAME are cylindrical harmonics in the vicinity of the cylinder
and plane waves away from the cylinder. The 9-point (3 · 3) stencil is used throughout the domain (with the
obvious truncation to 6 and 4 nodes at the edges and corners, respectively). A new perfectly matched layer
is introduced in some test cases [111]. Very rapid 6th-order convergence of the nodal values of the field was
experimentally observed when the Dirichlet conditions were imposed on the exterior boundary of the com-
putational domain. It would be quite difficult to construct a conventional difference scheme with compara-
ble accuracy in the presence of such material interfaces.

5.10.6. Wave propagation in a photonic crystal

An interesting example was given by Fujisawa andKoshiba [43,117]. The waveguide with a bend is formed
by eliminating a few dielectric cylindrical rods from a 2D array. This problemwas solved by Trefftz-FLAME,
with the same scheme as for the scattering problem above. Analysis of results and their convergence has
shown that the Trefftz-FLAME simulation on a 50 · 50 Cartesian grid yields the same level of accuracy as
a FEM simulation with 77,104 second order triangular elements (154,461 degrees of freedom).

5.11. Coupled plasmon nanoparticles

5.11.1. The plasmon resonance phenomenon

In the classic example of the electrostatic field distribution around adielectric spherical particle immersed in
auniformexternal field, the potential canbe easily found analytically via spherical harmonics. In fact, since the
uniform field (say, in the z-direction) has only one harmonic component (u = �E0z = �E0rcosh, in the usual
notation), the solution also happens to contain only the dipole harmonic.

The field inside the particle can be expressed as [54,100]
E ¼ E0

3�p
�p þ 2�out

; ð72Þ
where �p, �out are the dielectric constants of the particle and the surrounding medium, respectively. Other
related physical quantities (the dipole moment, the polarizability, the field outside the particle) are ex-
pressed similarly and all share a singularity point at �p = �2�out.

Under normal electrostatic conditions, the singularity never manifests itself because the dielectric con-
stants are all positive. However, in time-harmonic fields, the effective dielectric constant of materials gen-
erally becomes complex (reflecting the phase shift between the displacement vector D and the electric field
E). For metals, at frequencies below the plasma frequency the effective permittivity happens to have a neg-
ative real part. This is of significant practical interest because the resonance condition (occurring at
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�p = �2�out for spheres, and at other negative values of �p for other shapes) can indeed be approached.
These ‘‘plasmon’’ resonances of nanoparticles are becoming increasingly important in applications ranging
from nanooptics to nanosensors to biolabels.

The high frequency case that gives rise to negative effective permittivities is, by definition, generally very
far from electrostatics. However, when the particle size is very small compared to the wavelength, the elec-
trostatic approximation is reasonable, and a strong field enhancement is indeed possible. A true singularity,
though, is never obtainable, for two reasons. First, the electrostatic treatment is precise only in the limit
when the particle size tends to zero relative to the wavelength; for actual finite sizes of the particle the field
enhancement is diminished due to dephasing effects. Secondly, and perhaps more importantly, the actual
values of the dielectric constants are never purely real – the nonzero imaginary parts reflect the presence
of losses in the material and blur the resonances.

Although the electrostatic approximation does provide a very useful insight, accurate evaluation of the
resonance conditions and the field enhancement requires electromagnetic wave analysis. The governing
equation for theH-mode (one-componentH-field perpendicular to the computational plane and the electric
field in the plane).
r � ð��1rHÞ þ x2lH ¼ 0. ð73Þ

The standard notation for frequency x, permittivity � and magnetic permeability l is used. In the plasmon
problem, the permeability can be assumed equal to l0 throughout the domain; the permittivity is �0 in air
and has a complex and frequency-dependent value within plasmon particles. Any standard radiation
boundary conditions for the scattered wave can be used.

Note that in the H-mode (but not in the complementary E-mode) the electric field ‘‘goes through’’ the
plasmon particles, as it does in the electrostatic limit, thereby potentially giving rise to plasmon resonances.

As an illustrative example, the following subsections describe the construction of Trefftz-FLAME
schemes for the problem proposed by Kottmann and Martin [65]. The physical setup involves two cylindri-
cal plasmon particles with a small separation between them (Fig. 10) and leads to some interesting physical
effects [65] (that are completely beyond the scope of this paper). Kottmann and Martin used integral equa-
tions in their simulation.

5.11.2. Trefftz-FLAME schemes away from the particles

We consider Trefftz-FLAME schemes on a 9-point (3 · 3) stencil. It is natural to choose the basis func-
tions as cylindrical harmonics in the vicinity of each particle and as plane waves away from the particles.
�Vicinity� is defined by an adjustable threshold: r 6 rcutoff, where r is the distance from the midpoint of the
stencil to the center of the nearest particle, and the threshold rcutoff is typically chosen as the radius of the
particle plus a few grid layers.

Away from the particles, eight basis functions are taken as plane waves propagating toward the central
node of the nine-point stencil from each of the other eight nodes:
wa ¼ expðikr̂a � rÞ; a ¼ 1; 2; . . . ; 8; k2 ¼ x2l0�0. ð74Þ

Here the origin of the coordinate system is placed at the midpoint of the stencil and r̂a is the unit vector in
the direction toward the respective node of the stencil, i.e.
Fig. 10. Two cylindrical plasmon particles. Setup due to Kottmann and Martin [65].
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r̂a ¼ x̂ cos a
p
4

� �
þ ŷ sin a

p
4

� �
; a ¼ 1; 2; . . . ; 8. ð75Þ
The 9 · 8 nodal matrix (16) of FLAME comprises the values of the chosen basis functions at the stencil
nodes, i.e.
N ba ¼ waðrbÞ ¼ expðikr̂a � rbÞ; a ¼ 1; 2; . . . ; 8; b ¼ 1; 2; . . . ; 9. ð76Þ

The Trefftz-FLAME scheme (29) is s = Null(NT). Straightforward symbolic algebra computation shows
that this null space is indeed of dimension one, so that a single valid Trefftz-FLAME scheme exists. This
scheme is defined up to an arbitrary factor and can be normalized in accordance with (41), with the right
hand side f defined in (40).

To specify the normalization condition, it is sufficient to consider the wave equation (in air) with a con-
stant right-hand side f0 (viewed as a zero-order approximation of any smooth f(x,y)):
r2H þ k2H ¼ f0. ð77Þ

A particular solution of this equation is
Hf ¼
f0
k2

. ð78Þ
Then the right-hand side of the inhomogeneous Treffz-FLAME difference equation is
f
hi
¼ sðiÞTNðiÞHf ¼

f0
k2

X9

b¼1

sb; ð79Þ
where the fact that Hf is constant (78) was taken into account. Since the dependence of consistency and
convergence parameters on k is not important here, the k2 factor will be dropped from the normalization
for convenience. The normalized scheme can then be constructed in two steps:

1. Pick ~s 2 NullðNTÞ.
2. Normalize the scheme: s ¼ ~s=

P9
b¼1~sb (assuming that the sum is nonzero).

This normalization is as straightforward in symbolic algebra as the computation of the null space. The end
result is given in the Appendix.

Substituting the nodal values of a �test� plane wave expð�ikr̂ � rÞ, where r̂ ¼ x̂ cosð/Þ þ ŷ sinð/Þ, into the
difference scheme, one obtains, after some more symbolic algebra manipulation, the consistency error
�c ¼ ðhkÞ6ðcosð/Þ � 1Þcos2ð/Þðcosð/Þ þ 1Þð2cos2ð/Þ � 1Þ2=12; 096; ð80Þ

where for simplicity the mesh size h is assumed to be the same in both coordinate directions.

The /-dependent factor has its maximum of ð2� 2
1
2Þ=8 at cos 2/ ¼ ð1

2
þ 2

1
2=4Þ

1
2. Hence the consistency

error �c 6 ðhkÞ6ð2� 2
1
2Þ=96; 768. Since any solution of the Helmholtz equation in the air region can be

locally represented as a superposition (Fourier integral) of plane waves, this result for the consistency error
is in fact general. Note that by construction the scheme is exact for plane waves propagating in either of the
eight special directions (at ±45� to the axes if hx = hy = h).

Obviously, nodes at the domain boundary are treated differently. At the edges of the domain, the stencil
is truncated in a natural way to six points: �ghost� nodes outside the domain are eliminated, and the respec-
tive incoming plane waves associated with them are likewise eliminated from the basis set. The basis thus
consists of five plane waves: three strictly outgoing and two sliding along the edge.

A similar procedure is applied at the corner nodes: a four-node stencil is obtained, and only three plane
wave remain in the basis. The elimination of incoming waves from the basis thus leads to a FLAME-style
PML. A detailed study of this and other versions of FLAME PML will be reported elsewhere.



Fig. 11. The magnitude of the electric field along the line connecting two silver plasmon particles. Comparison of FLAME and
multipole-multicenter results. Particle radii 50 nm; varying wavelength of incident light.
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5.11.3. Trefftz-FLAME schemes in the vicinity of a particle

The �Trefftz� basis functions satisfying the wave equation are chosen as cylindrical harmonics in the vicin-
ity of each particle:
9 Th
wðiÞ
a ¼ anJnðkcylrÞ expðin/Þ; r 6 r0;

wðiÞ
a ¼ ½bnJnðkairrÞ þ H ð2Þ

n ðkairrÞ� expðin/Þ; r > r0;
where Jn is the Bessel function, H
ð2Þ
n is the Hankel function of the second kind [54], and an, bn are coefficients

to be determined. These coefficients are found via the standard conditions on the particle boundary; the
actual expressions for these coefficients are too lengthy to be worth reproducing here but are easily usable
in computer codes.

Eight basis functions are obtained by retaining the monopole harmonic (n = 0), two harmonics of orders
n = 1,2,3 (i.e. dipole, quadrupole and octupole), and one of harmonics of order n = 4. Numerical experi-
ments for scattering from a single cylinder, where the analytical solution is available for comparison and
verification, show convergence (not just consistency error!) of order six for this scheme [111].

5.11.4. Numerical results
The Trefftz-FLAME schemes described above were applied to the problem with two cylindrical particles

(Fig. 10). In Fig. 11, the electric field computed with Trefftz-FLAME is compared with the quasi-analytical
solution via the multicenter-multipole expansion of the wave [112,81],9 for the following parameters. The
e analytical expansion was implemented by Frantisek Čajko.
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radius of each silver nanoparticle is 50 nm. The wavelength of the incident wave varies as labeled in the
figure; the complex permittivity of silver at each wavelength is obtained by spline interpolation of values
reported by Johnson and Christy [64]. As evident from the figure, the results of FLAME simulation are
in excellent agreement with the quasi-analytical computation.
6. Discussion

The ‘‘flexible approximation’’ approach combines analytical and numerical tools: it integrates local ana-
lytical approximations of the solution into numerical schemes in a simple way. Existing applications and
special cases of FLAME are listed in the following table and fall under two categories. The first one con-
tains standard difference schemes revealed as direct particular cases of Trefftz-FLAME. The second cate-
gory contains FLAME schemes that are substantially more accurate than their conventional
counterparts, often with a higher rate of convergence for identical stencils. Practical implementation of Tre-
fftz-FLAME schemes is substantially simpler than FEM matrix assembly and comparable with the imple-
mentation of conventional schemes (e.g. flux-balance schemes). A current summary of examples and
applications of Trefftz-FLAME schemes is listed below.
Application
 Basis functions
used in FLAME
Stencil used in
FLAME
Accuracy of
FLAME schemes
Comparison with
standard finite-
difference schemes
Standard schemes
for the 3D
Laplace equation
Local harmonic
polynomials
Depends on the
order
2nd order for the 7-
point stencil
Standard schemes
are a simple
particular case of
FLAME
Mehrstellen scheme
for the 3D
Laplace equation
Harmonic
polynomials in x, y,
z up to order 4
19-point
 4th order
 The ‘‘Mehrstellen’’-
Collatz scheme
revealed as a
natural particular
case of FLAME
1D Schrödinger
equation
High-order Taylor
approximations to
the solution
3-point
 Any desired order
 The Numerov
scheme is 4th order.
3-point schemes of
order higher than 4
not available
1D heat conduction
with variable
material
parameter
Independent local
solutions of the
heat equation
3-point
 Exact (machine
precision in
practice)
So-called
‘‘homogeneous’’
schemes [95] are a
particular case of
FLAME.
Time-domain scalar
wave equation
(one spatial
dimension)
Traveling waves
(polynomials times
sinusoids)
5-point
 2nd order in the
generic case
In the generic case,
equivalent to
central differences.
Much higher
accuracy if a
dominant
frequency is present
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Application Basis functions Stencil used in Accuracy of Comparison with

used in FLAME
 FLAME
 FLAME schemes
 standard finite-

difference schemes
Slanted material
interface
boundary
Local polynomials
satisfying interface
matching
conditions
7-point in 3D, 5-
point in 2D
2nd order
 Standard schemes,
unlike FLAME,
suffer form
�staircase� effects
Unbounded
problems
Multipole
harmonics outside
the computational
domain
7-point in 3D
 See [52]
 Standard finite-
difference schemes
not applicable to
unbounded
problems
Charged colloidal
particles, no salt
Spherical
harmonics (up to
quadrupole)
7-point
 2nd order
 Much higher
accuracy than the
standard flux-
balance scheme
Charged colloidal
particles, mono-
valent salt
(Poisson-
Boltzmann)
Spherical Bessel
harmonics (up to
quadrupole)
7-point
 2nd order
 Much higher
accuracy than the
standard scheme
Scattering from a
dielectric cylinder
(frequency do-
main)
Plane waves in air
and cylindrical
harmonics near
scatterer
9-point
 6th order
 Much higher
accuracy than the
standard scheme
Perfectly Matched
Layer (frequency
domain)
Outgoing plane
waves
9-point
 Under investigation
Wave propagation
in a photonic
crystal
Cylindrical
harmonics
9-point
 6th order
 Much higher
accuracy than the
standard scheme
and FEM with 2nd
order triangular
elements
Coupled plasmon
particles
Plane waves in air
and cylindrical
harmonics near
particles
9-point
 6th order
 Much higher
accuracy than the
standard scheme
It is worth noting that FLAME schemes do not have any hidden parameters to contrive better perfor-
mance. The schemes are completely defined by the choice of the basis set and stencil; it is the approximating
properties of the basis that have the greatest bearing on the numerical accuracy.

The collection of examples in the table above inspires further analysis and applications of FLAME. The
table is in no way exhaustive – for example, boundary layers in eddy current problems and in semiconduc-
tor simulation (the Scharfetter–Gummel approximation [97,42]), varying material parameters in some pro-
tein models [46,116], corner singularities, etc., could be added to this list. Naturally, the author is hopeful
that FLAME schemes will eventually find their use in these and other areas. Future challenges include:
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development of a more comprehensive mathematical theory and convergence analysis, with insights into
the �best� choice of bases and stencils; robust postprocessing tools for field and force computation from
the potential in FLAME; schemes in the time domain; schemes for systems of equations and for vector
fields (for example, time-dependent Maxwell equations); and, on a more practical side, moving from testing
and verification to large-scale simulations.

The method is most powerful when good local analytical approximations of the solution are available.
For example, the advantage of the special field approximation in FLAME for a photonic crystal problem is
crystal clear in [111]. Similarly, problems with magnetizable or polarizable particles admit an accurate rep-
resentation of the field around the particles in terms of spherical harmonics, and the resultant FLAME
schemes are substantially more accurate than the standard control volume method.

The Trefftz-FLAME schemes are not variational, which makes their construction quite simple and
sidesteps the notorious bottleneck of computing numerical quadratures. At the same time, given that this
method is nonvariational and especially non-Galerkin, one cannot rely on the well-established convergence
theory so powerful, for example, in finite element analysis. For the time being, FLAME methods need to
be considered on a case-by-case basis, with the existing convergence results (Section 4.5) and experimental
evidence (Section 5) in mind. Furthermore, again because the method is non-Galerkin, the system matrix is
in general not symmetric, even if the underlying continuous operator is self-adjoint. In many – but not all –
cases, this shortcoming is well compensated for by the superior accuracy and rate of convergence (Section 5).

FLAME schemes described in the paper use nodal values as the primary degrees of freedom (d.o.f.).
Other d.o.f. could certainly be used, for example edge circulations of the field. The matrix of edge circula-
tions would then be introduced instead of the matrix of nodal values in the algorithm, and the notion of the
stencil would be modified accordingly. In the FE context (edge elements), this choice of d.o.f. is known to
have clear mathematical and physical advantages in various applications [14,57,72,107] and is therefore
worth exploring in the FLAME framework as well.

At the suggestion of the anonymous reviewer, let us in closing discuss the potential use of FLAME
schemes either as a general-purpose methodology for engineering applications or, alternatively, as a rela-
tively narrow set of techniques for experts in computational methods.

One likely scenario is that the ideas presented in this paper will prove useful for further development of
difference schemes in various areas. Such schemes can be eventually incorporated into existing FD software
packages for use by many researchers and practitioners.

In the foreseeable future, FEM, due to its unrivaled generality and robustness, will remain king of
engineering simulation software. However, FLAME schemes may successfully occupy the niches where
FEM has serious weaknesses. One example is the simulation of electrostatic multiparticle interactions in
colloidal systems, where FEM is impractical (and fast multipole methods may not be suitable due to non-
linearity and inhomogeneities). Although at present colloidal interactions can be considered as a �niche
application�,10 the rapid progress of nanotechnology, and in particular nanoscale assembly, could make this
�niche�, and consequently the role of FLAME, much more prominent. Software for large-scale Trefftz-
FLAME simulations of electrostatic interactions in colloidal suspensions is currently under development.11

Similar observations can be made (perhaps to a lesser extent) regarding the simulation of macromolecules,
including proteins and polyelectrolytes, where electrostatic interactions of atoms in the presence of the solvent
are extremely importantbutare still onlypart of anenormously complicatedphysicalpicture.Yet another exam-
ple of a �niche application� that could grow very rapidly in the future is wave propagation in photonic crystals.

Furthermore, the FLAME methodology will receive a boost if it is proven that accurate local numerical

solutions can be used in lieu of the analytical ones to construct FLAME bases. This would significantly
10 Colloidal scientists might disagree with that, though.
11 Joint work with E. Ivanova, S. Voskoboynikov, and G. Friedman.
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expand possible applications of FLAME. One could envision solving local ‘‘mini-FEM’’ problems (that are
dramatically simpler in terms of mesh generation, matrix assembly and solvers than the global problem) to
generate local FLAME bases. FLAME schemes will continue to operate on simple and relatively coarse
Cartesian grids that do not necessarily have to resolve all geometric features of the problem. The system
matrix would continue to be of relatively low dimension, with a simple structure.

Finally, any algorithmused inmodern engineering practice has to be adaptive. It is way too early now to tell
if robust adaptive procedures can be built on the FLAME basis. Notably, however, the ‘‘multilevel approx-
imation’’ framework is a natural setup for a posteriori error indicators. Namely, the discrepancies between
several local solutions coexisting on overlapping patches (see Section 3.3) may serve as a natural error gauge.

In addition to practical usage and to the potential of generating new difference schemes in various appli-
cations, there is also some intellectual merit in having a unified perspective on different families of FD tech-
niques such as low- and high-order Taylor-based schemes, the Mehrstellen schemes, the �exact� schemes,
some special schemes for electromagnetic wave propagation, the ‘‘measured equation of invariance’’,
and more. This unified perspective is achieved through systematic use of local approximation spaces in

the finite difference context.
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Appendix. Coefficients of the 9-Point Trefftz-FLAME scheme for the wave equation in free space

The mesh size h is for simplicity assumed to be the same in both x- and y-directions. A 3 · 3 stencil is
used. The eight Trefftz-FLAME basis functions are taken as plane waves in eight directions of propagation
(toward the central node of the stencil from each of the other nodes). The following coefficients of the
Trefftz-FLAME scheme (29) are then obtained.

For the central node:
s1 ¼
ðe1

2
þ 1Þðe1

2
e1 þ 2e1

2
e0 � 4e�1

2
e1 þ e1

2
� 4e�1

2
þ e1 þ 2e0 þ 1Þ

ðe0 � 1Þ2ðe�1
2
� 1Þ4
For the four mid-edge nodes:
s2�5 ¼ �
e3
2
e0 � 2e1

2
e1 þ 2e1

2
e0 � 2e1

2
þ e0

ðe0 � 1Þ2ðe�1
2
� 1Þ4
For the four corner nodes:
s6�9 ¼
e�1

2
ð2e1

2
e0 � e�1

2
e1 � 2e�1

2
e0 � e�1

2
þ 2e0Þ

ðe0 � 1Þ2ðe�1
2
� 1Þ4
where ec ¼ expð2cihkÞ; c ¼ � 1
2
; 0; 1

2
; 1; 3

2
.
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